Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Acta Pharmaceutica Sinica B ; (6): 648-661, 2023.
Article in English | WPRIM | ID: wpr-971736

ABSTRACT

Cholesterol is an important precursor of many endogenous molecules. Disruption of cholesterol homeostasis can cause many pathological changes, leading to liver and cardiovascular diseases. CYP1A is widely involved in cholesterol metabolic network, but its exact function has not been fully elucidated. Here, we aim to explore how CYP1A regulates cholesterol homeostasis. Our data showed that CYP1A1/2 knockout (KO) rats presented cholesterol deposition in blood and liver. The serum levels of low-density lipoprotein cholesterol, high-density lipoprotein cholesterol and total cholesterol were significantly increased in KO rats. Further studies found that the lipogenesis pathway (LXRα-SREBP1-SCD1) of KO rats was activated, and the key protein of cholesterol ester hydrolysis (CES1) was inhibited. Importantly, lansoprazole can significantly alleviate rat hepatic lipid deposition in hypercholesterolemia models by inducing CYP1A. Our findings reveal the role of CYP1A as a potential regulator of cholesterol homeostasis and provide a new perspective for the treatment of hypercholesterolemia.

2.
Acta Pharmaceutica Sinica B ; (6): 2976-2989, 2023.
Article in English | WPRIM | ID: wpr-982894

ABSTRACT

Osteoarthritis (OA) is one of the most common chronic diseases in the world. However, current treatment modalities mainly relieve pain and inhibit cartilage degradation, but do not promote cartilage regeneration. In this study, we show that G protein-coupled receptor class C group 5 member B (GPRC5B), an orphan G-protein-couple receptor, not only inhibits cartilage degradation, but also increases cartilage regeneration and thereby is protective against OA. We observed that Gprc5b deficient chondrocytes had an upregulation of cartilage catabolic gene expression, along with downregulation of anabolic genes in vitro. Furthermore, mice deficient in Gprc5b displayed a more severe OA phenotype in the destabilization of the medial meniscus (DMM) induced OA mouse model, with upregulation of cartilage catabolic factors and downregulation of anabolic factors, consistent with our in vitro findings. Overexpression of Gprc5b by lentiviral vectors alleviated the cartilage degeneration in DMM-induced OA mouse model by inhibiting cartilage degradation and promoting regeneration. We also assessed the molecular mechanisms downstream of Gprc5b that may mediate these observed effects and identify the role of protein kinase B (AKT)-mammalian target of rapamycin (mTOR)-autophagy signaling pathway. Thus, we demonstrate an integral role of GPRC5B in OA pathogenesis, and activation of GPRC5B has the potential in preventing the progression of OA.

3.
Acta Pharmaceutica Sinica B ; (6): 850-860, 2020.
Article in English | WPRIM | ID: wpr-828839

ABSTRACT

Organic anion transporting polypeptide 1B1 and 1B3 (OATP1B1/3) as important uptake transporters play a fundamental role in the transportation of exogenous drugs and endogenous substances into cells. Rat OATP1B2, encoded by the gene, is homologous to human OATP1B1/3. Although OATP1B1/3 is very important, few animal models can be used to study its properties. In this report, we successfully constructed the S knockout (KO) rat model using the CRISPR/Cas9 technology for the first time. The novel rat model showed the absence of OATP1B2 protein expression, with no off-target effects as well as compensatory regulation of other transporters. Further pharmacokinetic study of pitavastatin, a typical substrate of OATP1B2, confirmed the OATP1B2 function was absent. Since bilirubin and bile acids are the substrates of OATP1B2, the contents of total bilirubin, direct bilirubin, indirect bilirubin, and total bile acids in serum are significantly higher in KO rats than the data of wild-type rats. These results are consistent with the symptoms caused by the absence of OATP1B1/3 in Rotor syndrome. Therefore, this rat model is not only a powerful tool for the study of OATP1B2-mediated drug transportation, but also a good disease model to study hyperbilirubinemia-related diseases.

4.
Protein & Cell ; (12): 700-700, 2019.
Article in English | WPRIM | ID: wpr-757878

ABSTRACT

In the original publication the grant number is incorrectly published. The correct grant number should be read as "17140901600". The corrected contents are provided in this correction article. This work was partially supported by grants from the National Natural Science Foundation of China (Nos. 81670470 and 81600149), a grant from the Shanghai Municipal Commission for Science and Technology (17140901600, 18411953500 and 15JC1400201) and a grant from National Key Research and Development Program (2016YFC0905100).

5.
Organ Transplantation ; (6): 344-348, 2017.
Article in Chinese | WPRIM | ID: wpr-731691

ABSTRACT

Objective To investigate the training methods and evaluation parameters for donor lung procurement technique in swine models. Methods The surgical skills of donor lung procurement in 15 swine models were summarized. The operation time, objective evaluation parameters before lung perfusion, gross observation after lung perfusion, the type and frequency of intraoperative errors were assessed. Results All donor lung procurement surgeries were successfully completed in 15 swine models. The mean time interval from skin incision to lung perfusion was 22.6 min. Prior to lung perfusion, the oxygenation index of the donor lung was (501±68) mmHg, (404±100) mL (under the pressure of 15 mmHg) for the tidal volume and (29±4) mL/cmH2O for the static compliance. Along with the increasing surgical frequency, the oxygenation index and tidal volume were improved. Favorable lung inflation was obtained after lung perfusion in a majority of swine models. Intraoperatively, multiple operating errors occurred including dissection error, pulmonary arterial intubation error and procedure error, etc. As the frequency of operation increased, the frequency of surgical errors was significantly decreased. Conclusions After certain training for donor lung procurement in swine models, the incidence of intraoperative procedure error is significantly reduced and the quality of the donor lung tends to be enhanced. Objective parameters, such as oxygenation index and the gross shape of the donor lung can be utilized to evaluate the levels of surgical techniques.

6.
Acta Pharmaceutica Sinica ; (12): 977-84, 2014.
Article in Chinese | WPRIM | ID: wpr-448680

ABSTRACT

Previous studies proposed that the synergistic effect of fibroblast growth factor-21 (FGF-21) and insulin may be due to the improvement of insulin sensitivity by FGF-21. However, there is no experimental evidence to support this. This study was designed to elucidate the mechanism of synergistic effect of FGF-21 and insulin in the regulation of glucose metabolism. The synergistic effect of FGF-21 and insulin on regulating glucose metabolism was demonstrated by investigating the glucose absorption rate by insulin resistance HepG2 cell model and the blood glucose chances in type 2 diabetic db/db mice after treatments with different concentrations of FGF-21 or/and insulin; The synergistic metabolism was revealed through detecting GLUT1 and GLUT4 transcription levels in the liver by real-time PCR method. The experimental results showed that FGF-21 and insulin have a synergistic effect on the regulation of glucose metabolism. The results of real-time PCR showed that the effective dose of FGF-21 could up-regulate the transcription level of GLUT1 in a dose-dependent manner, but had no effect on the transcription level of GLUT4. Insulin (4 u) alone could up-regulate the transcription level of GLUT4, yet had no effect on that of GLUT1. Ineffective dose 0.1 mg kg(-1) FGF-21 alone could not change the transcription level of GLUT1 or GLUT4. However, when the ineffective dose 0.1 mg x kg(-1) FGF-21 was used in combination with insulin (4 u) significantly increased the transcription levels of both GLUT1 and GLUT4, the transcription level of GLUT1 was similar to that treated with 5 time concentration of FGF-21 alone; the transcription level of GLUT4 is higher than that treated with insulin (4 u) alone. In summary, in the presence of FGF-21, insulin increases the sensitivity of FGF-21 through enhancing GLUT1 transcription. Vice versa, FGF-21 increases the sensitivity of insulin by stimulating GLUT4 transcription in the presence of insulin. FGF-21 and insulin exert a synergistic effect on glucose metabolism through mutual sensitization.

7.
Acta Pharmaceutica Sinica ; (12): 470-5, 2014.
Article in Chinese | WPRIM | ID: wpr-448606

ABSTRACT

Fibroblast growth factor-21 (FGF-21) is an important metabolism regulator, however, whether FGF-21 has effects on cardiovascular remains unclear. In this study, H2O2-induced injury in H9c2 cells was used as a cell model, the anti-apoptosis potential and mechanism of FGF-21 against oxidative injury were evaluated by MTT assay, flow cytometry assay and real-time PCR. The results showed that FGF-21 could increase the cell survival of H2O2-induced injury in H9c2 cells and prevent H9c2 cells from oxidative stress-induced apoptosis. Furthermore, FGF-21 can elevate SOD activity and regulate Bcl-2/Bax expression in H9c2 cells. The results suggest that FGF-21 have protective effect against the H2O2-induced apoptosis in H9c2 cells.

8.
Acta Pharmaceutica Sinica ; (12): 352-8, 2013.
Article in Chinese | WPRIM | ID: wpr-445543

ABSTRACT

Insulin is the most common medicine used for diabetic patients, unfortunately, its effective time is short, even the long-acting insulin cannot obtain a satisfactory effect. Fibroblast growth factor (FGF)-21 is a recently discovered glucose mediator and expected to be a potential anti-diabetic drug that does not rely on insulin. In this study, db/db mice were used as the type 2 diabetic model to examine whether mFGF-21 has the long-term blood lowering effect on the animal model. The results showed that mFGF-21 could stably maintain the blood glucose at normal level for a long-term in a dose-dependent manner. Administration of mFGF-21 once a day with three doses (0.125, 0.25 and 0.5 mg x kg(-1)) could maintain blood glucose of the model animals at normal level for at least 24 h. Administration of mFGF-21 every two days with the same doses could maintain blood glucose of the model animals at normal level for at least 48 h, although it took longer time for blood glucose to reach to normal level depending on doses used (twenty injections for 0.125 mg x kg(-1) and 0.25 mg x kg(-1) doses, ten injections for 0.5 mg x kg(-1) dose). Surprisingly, the blood glucose of the treated model animals still maintained at normal level for 24 h after the experiment terminated. Glycosylated hemoglobin level of the animals treated with mFGF-21, which represented long-term glucose status, decreased significantly compared to the control group and the insulin group. The results suggest that FGF-21 has potential to become a long-acting and potent anti-diabetic drug.

9.
Acta Pharmaceutica Sinica ; (12): 1409-14, 2013.
Article in Chinese | WPRIM | ID: wpr-445477

ABSTRACT

This study is to evaluate the therapeutic effect of fibroblast growth factor 21 (FGF21) on hypertension induced by insulin resistance in rats and to provide mechanistic insights into its therapeutic effect. Male Sprague-Dawley (SD) rats were fed with high-fructose (10%) water to develop mild hypertensive models within 4 weeks, then randomized into 4 groups: model control, FGF21 0.25, 0.1 and 0.05 micromol x kg(-1) x d(-1) groups. Five age-matched normal SD rats administrated with saline were used as normal controls. The rats in each group were treated once a day for 4 weeks. Body weight was measured weekly, systolic blood pressure (SBP) was measured noninvasively using a tail-cuff method, insulin sensitivity was assessed using oral glucose tolerance test (OGTT) and HOMA-IR assay. At the end of the treatment, blood samples were collected, and blood glucose, serum cholesterol, serum triglyceride and serum insulin were measured. The results showed that blood pressure of the rats treated with different doses of FGF21 returned to normal levels [(122.2 +/- 3.5) mmHg, P < 0.01] after 4-week treatment, whereas, SBP of untreated (model control) rats maintained a high level [(142.5 +/- 4.5) mmHg] throughout the treatment. The observation of blood pressure in 24 h revealed that SBP of FGF21 treated-rats maintained at (130 +/- 4.5) mmHg vs. (143 +/- 5.5) mmHg for model control (P < 0.01). FGF21 treatment groups improved serum lipids obviously, total cholesterol (TC) and triglyceride (TG) levels decreased significantly to normal levels. The serum NO levels of three different doses FGF21 treatment group were significantly higher than that of the model control group [(7.32 +/- 0.11), (7.24 +/- 0.13), (6.94 +/- 0.08) vs. (6.56 +/- 0.19) micromol x L(-1), P < 0.01], and the degree of improvement showed obvious dose-dependent manner, indicating that FGF21 can significant increase serum NO in fructose-induced hypertension rat model and improve endothelial NO release function. The results of OGTT and HOMA-IR showed that insulin resistance state was significantly relieved in a dose-dependent manner. Thus, this study demonstrates that FGF21 significantly ameliorates blood pressure in fructose-induced hypertension model by relieving insulin resistance. This finding provides a theoretical support for clinical application of FGF21 as a novel therapeutics for treatment of essential hypertension.

10.
Acta Pharmaceutica Sinica ; (12): 897-903, 2012.
Article in Chinese | WPRIM | ID: wpr-431021

ABSTRACT

Fibroblast growth factor 21 (FGF21) is a member of FGF family. It has been demonstrated that FGF21 is an independent, safe and effective regulator of blood glucose levels in vivo. In order to improve the activity of FGF21, we exchanged the beta10-beta12 domain of the human FGF21 with that of the mouse FGF21 to construct a novel FGF21 gene (named hmFGF21), and then subcloned hmFGF21 gene into the SUMO expression vector to create pSUMO-hmFGF21 and transformed it into E. coli Rosetta for expression of the fusion protein SUMO-hmFGF21. Both in vitro and in vivo glucose regulation activity of hmFGF21 was evaluated. The SDS-PAGE result showed that compared with wild-type hFGF21, the soluble expression of hmFGF21 increased about 2-fold. HmFGF21 was more potent in stimulation of glucose uptake in HepG2 cells in vitro. The results of anti-diabetic effect on db/db mice demonstrated that hmFGF21 had better efficacy on controlling the blood glucose of the db/db diabetic animals than wild-type hFGF21. These results suggest that the biological properties of FGF21 are significantly improved by optimization.

11.
Journal of International Oncology ; (12): 188-190, 2010.
Article in Chinese | WPRIM | ID: wpr-389973

ABSTRACT

Cytokines can have either pro-or anti-inflammatory activity and immunosuppressive activity,depending on the microenvironment.Tumors contain immune cells and a network of pro-and anti-inflammatory cytokines,which collaborate in the development and progression of cancer.Cytokine might prove to be prognostic.The systemic effects of pro-inflammatory cytokines are associated with fatigue,depression,cognitive impairment,anorexia,cachexia,pain,toxicity of treatment and resistance to treatment,which can affect quality of life.

12.
Chinese Journal of Biotechnology ; (12): 121-129, 2010.
Article in Chinese | WPRIM | ID: wpr-336252

ABSTRACT

The aim of the study is to construct two vectors for efficient expression of soluble recombinant proteins. The first vector was constructed by cloning the HisSUMO fragment into an expression vector pET30a(+) to fuse with the gene of interest (designated as HisSUMO Express). The second vector was constructed in the same way, but with a hydroxylamine cleavage site between HisSUMO and the gene of interest for an economic purpose (designated as HisSUMO Economic). The mouse fibroblast growth factor-21(mFGF-21), which was difficult to express in routine-used expression vectors, was taken as an example to test the vectors. The results showed that the mFGF-21 was expressed at high level in both vectors. The Sumo/mFGF-21 fusion protein accounted for more than 40% of the total bacterial protein. The fusion protein was purified with Ni-TNA column, and the HisSUMO was removed by cleavage of the fusion protein with either hydroxylamine solution or SUMO protease I. The concentration of the purified mFGF-21 mature protein was 54 mg/L and the recovery rate was 6%. The purified proteins derived from either hydroxylamine or SUMO protease I cleavage could stimulate glucose up-take by adipocytes. These results indicated that both HisSUMO Express and HisSUMO Economic were useful expression vectors for efficient expression of soluble recombinant proteins.


Subject(s)
Animals , Mice , Fibroblast Growth Factors , Genetics , Genetic Vectors , Genetics , Hydroxylamine , Chemistry , Peptide Hydrolases , Chemistry , Recombinant Fusion Proteins , Genetics , Solubility
13.
Chinese Journal of Biotechnology ; (12): 837-842, 2010.
Article in Chinese | WPRIM | ID: wpr-292200

ABSTRACT

The aim of the study is to obtain an efficient expression of recombinant ubiquitin-like specific protease 1 (Ulp1) by gene engineering. We cloned the Ulp1p, active fragment (403 aa-621 aa) of Ulp1, from Saccharomyces cerevisia, and subcloned into pGEX/Rosetta (DE3) to form an expression plasmid, pGEX-Ulp1p-His6. In order to enhance the solubility of GST-Ulp1p-His6, we purified the fusion protein GST-Ulp1p-His6 by either glutathione S-transferase agarose or Ni-NTA resin chromatography, the purity was up to 98%. We utilized the protein to cleave the SUMO fusions, and the specific activity of GST-Ulp1p-His6 was 1.375 x 10(4) U/mg. This study showed that the recombinant protein GST-Ulp1p-His6 displayed high specificity and activity.


Subject(s)
Cloning, Molecular , Cysteine Endopeptidases , Genetics , Escherichia coli , Genetics , Metabolism , Fungal Proteins , Genetics , Glutathione Transferase , Genetics , Recombinant Fusion Proteins , Genetics , Saccharomyces cerevisiae , Solubility
14.
Progress in Biochemistry and Biophysics ; (12)2006.
Article in Chinese | WPRIM | ID: wpr-596093

ABSTRACT

Insulin resistance in insulin sensitive organ results in metabolic disorder such as hyperglycemia, hyperinsulinemia and hyper triglyceridemia which are common features of type 2 diabetes.Insulin resistance in liver cells mainly causes impaired glycogen synthesis, failed to suppress glucose production which is the major contribution to hyperglycemia.FGF-21 as a new metabolic regulator can control fasting blood glucose.The mechanism of FGF-21 effects on regulating plasma glucose has little to known.In order to establish an in vitro insulin resistant model of liver cells and evaluate the effects and mechanism of FGF-21 on glucose metabolism in the cell model, HepG2 cells were incubated with 10-7 mol/L insulin for 24 h to build insulin-resistant cell model.To evaluate the cells for insulin resistance, the cells were stimulated with fresh insulin for 24 h and the glucose uptake by these cells was carried out.The insulin-resistant cells were treated with different concentrations of FGF-21 for 24 h and insulin-treated cells were used as a control.The glucose uptake by the cells was detected by the method of glucose oxidizes/peroxides(GOD-POD);the synergy between insulin and FGF-21 was evaluated.The mRNA expression of GLUT1 in the insulin-resistant cells was detected by the real-time PCR.Glycogen synthesis of the cells was examined by the anthrone method.The results showed that HepG2 cells treated with 10-7 mol/L insulin for 24 h became resistant to insulin and the insulin resistance status was maintained for 48 h without change of cell morphology.FGF-21 could stimulate glucose consumption of the insulin-resistant model in a dose-dependent manner.The glucose consumption and glycogen synthesis of the insulin-resistant model were significantly improved by FGF-21 treatment.FGF-21 showed strong synergy with insulin in glucose uptake and glycogen synthesis of the model cells.While the cells became resistant to insulin, FGF-21 could increase the mRNA expression of GLUT1.Thus, It is concluded that FGF-21 stimulates glucose uptake in insulin resistant HepG2 cells through GLUT1 expression, stimulates glycogen synthesis and improves the glucose metabolism in the insulin resistant liver cell model.

15.
Chinese Journal of Pathophysiology ; (12): 788-2001.
Article in Chinese | WPRIM | ID: wpr-571798

ABSTRACT

Cytokines are involved in both host defense and inflammatory lung injury. Recent work from our laboratory and others has demonstrated that in addition to classical immune cells, lung alveolar epithelial cells (or pneumocytes) can also produce cytokines in response to various stimuli. This new knowledge has advanced our view of the host defense system in the lung. The regulatory mechanisms of cytokine production have been studied in great detail at various cellular and molecular levels, but the mechanisms of intracellular cytokine transport are largely unknown. Our recent studies suggest that the cytoskeleton could play an important role in mediating intracellular cytokine trafficking. This could be an important regulatory step for cytokine production. For example, lipopolyssacharide (LPS) induced tumor necrosis factor-α (TNF-α) from rat pneumocytes, which was further enhanced by a microfilament-disrupting agent. LPS also induced macrophage inflammatory protein-2(MIP-2), a chemokine for neutrophil recruitment and activation, from rat pneumocytes. This effect was enhanced by microtubule-disrupting agents. We speculate that both microfilaments and microtubules are involved in regulating cytokine transportation in pneumocytes through different mechanisms. Further investigation in on going in my laboratory. From a clinical perspective, if we understand the mechanisms regulating cytokine production and release from lung alveolar epithelial cells, we may be able to enhance or inhibit release of crucial cytokines depending on the clinical situation.

16.
Academic Journal of Second Military Medical University ; (12)1985.
Article in Chinese | WPRIM | ID: wpr-543427

ABSTRACT

Bovine pulmonary surfactant was obtained by endotracheal lavage of lungs from newly slaughtered calves followed by differential centrifugation.Lipid extracts of bovine surfactant contained 86.1?2.1% "of phospholipids (X?SD) , 1.8?1.1%of protein and smaller amounts of cholesterol, fatty acids, glycerides and carbohydrate. Phosphatidylcholine(83.4?5.6%)accounted for most of the phospholipids, of which disaturated phosphatidylcholine was 76.0? 4.7% .The physicochemical properties of bovine surfactant were measured with a modified Wilhelmy film balance made by the authors.The minimum surface tension was 2.4?1.5mN/m, stability index was 1.78?0.15, surface compresibility at 10mN/m was 0.022?0.004 m/mN, and surface concentration of phospholipids at 10mN/m was 1.112?0.283 nmol/cm2. The surfactant spread rapidly and could be quickly absorbed to the surface of the water.The results show that the bovine pulmonary surfactant we isolated is able to meet the criteria for investigations of surfactant replacement therapy.

SELECTION OF CITATIONS
SEARCH DETAIL